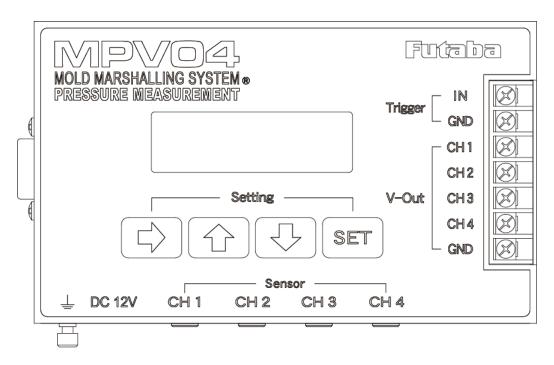


Mold Marshalling System

for In-Mold Measurement


Pressure Measuring Amplifier

MPV04

Instruction Manual

Thank you for your purchasing a product of Futaba Corporation.

Please read this instruction manual carefully and patronize the product for many years to come. Do not use this product in a manner not specified in this manual.

Unauthorized duplication or reproduction of this product in whole or in part is strictly prohibited.

This product is the copyrighted work of Futaba Corporation and the ownership of the product belongs to Futaba Corporation.

The information contained in this manual is subject to change without prior notice.

Contents

Safety Precautions	
Preface	1
Standard Accessories	1
Handling Precautions	1 2 3
System Configuration	3
1. Names & Major Functions of Components	_4
1-1 Front	4
2. Preparation	5
2-1 Installing the System	5
2-1-1 Installing the pressure sensor	5 5 6 7
2-1-2 Installing the amplifier	5
2-2 Connections in System	6
2-3 Connecting the I/O Signal	7
2-3-1 Notes on trigger signal	7
2-3-2 Connect the trigger signal	 8
2-3-3 Connect the output signal	
(voltage output)	9
2-4 Connecting the Power Supply	9
· ·	
3. Basic Operation of Amplifier	10
3-1 Turning Power ON/OFF	10
3-2 Operating the Amplifier	10
3-2-1 Operating the key switches	10
3-2-2 Checking the display window	11
4. Basic Operation	12
4-1 Setting the Sensor Sensitivity Class	12
5. Using the System	13
5-1 Starting Measurement	13
5-2 Observing Pressure Waveforms	<u> </u>
	13
6. Checking the Operation	
6. Checking the Operation 6-1 Checking a Trigger Input Signal	13
	13
6-1 Checking a Trigger Input Signal	13 14 14
6-1 Checking a Trigger Input Signal 6-2 Checking the Output Signal 6-2-1 Quick sensor checking	13 14 14 14
6-1 Checking a Trigger Input Signal 6-2 Checking the Output Signal	13 14 14 14

	7-1 Connecting an External Measuring	
	Device	15
	7-2 Setting the External Measuring	
	Device	15
	7-3 Observing Pressure Waveforms	15
8. I	Reference	16
9. 3	Specifications	17

Safety Precautions (Be sure to read before use)

■ Before Use

Before using the product, read this "Safety Precautions" and the instruction manual carefully.

After reading the manual, keep it in a safe place so that it can be used whenever needed.

When using the product, be sure to observe the following safety precautions.

Futaba Corporation assumes no liability for the injury caused by using the product contrary to these precautions.

■ This manual uses the following alert symbols for safe use of the product.

WARNING

Failure to observe the instructions with this symbol could result in death or serious personal injury.

CAUTION

Failure to observe the instructions with this symbol could result in injury or only damage to property.

■ General Precautions

- When starting product operation, make sure in advance that the functions of the product are normally working with normal performance.
- If the product fails, use adequate safety measures to prevent various types of damage.
- Note that we cannot guarantee the functionality and performance for use of the product not conforming to the specifications or any remodeled product.
- When using the product in combination with other equipment, evaluate it thoroughly because the functionality and performance may not be satisfactory depending on the use conditions and environment.

■ Precautions

When installing the product or connecting cables, be sure to disconnect the WARNING power cable from the outlet in advance. It could result in electric shock or malfunction.

Do not use a broken cable or a cable with a flaw in the covering. It could result in fire, electric shock, or device damage or failure.

Use the power to the AC adaptor within the range (100 to 240 V) stipulated in the specifications. Using power outside the range could result in fire or device damage or failure.

Use the AC adaptor that comes with the product. Using any other AC adaptor could result in device damage or failure.

Keep the sensor, amplifier, Junction box, and Junction cable away from water. It could result in electric shock or device damage.

Preface

"Mold Marshalling System MPV04" is a system for measuring resin pressure inside the mold of an injection molding machine using a strain gage pressure sensor of Futaba Corporation.

It outputs the measured values as voltage to external measuring equipment such as a data logger and injection machine to allow you to monitor and manage data.

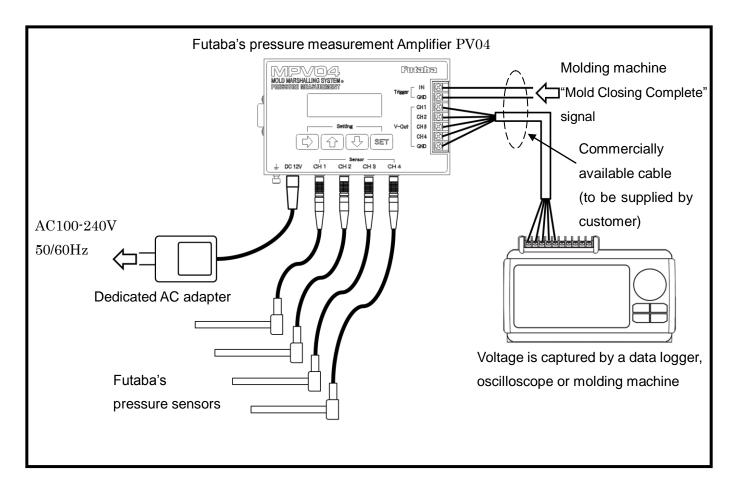
- Measures up to four channels concurrently.
- Measures the pressure of resin inside the mold with a 1 ms sampling period and outputs voltage according to the pressure.
- •No PC is required. The MPV04 can operate and be configurable standalone.
- Compact design for easy installation.
- •Easy-to-handle voltage output, which allows this equipment to be easily connected to your measuring equipment as well as molding machine.
- •Display panel employs a fluorescent display tube that has a high level visibility.
- "SSE series" or "SSB series" can be connected as the pressure sensors.

Please read this instruction manual carefully and use the product correctly. If you have any questions, please contact our sales department.

Standard Accessories

■ This equipment comes with the following standard accessories.

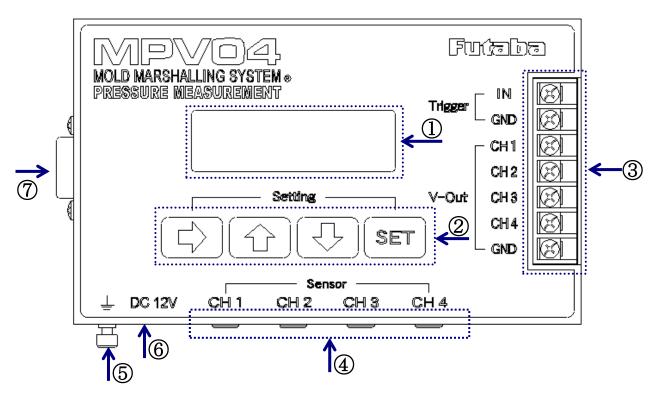
After unpacking the equipment, make sure that all accessories are included.


• Pressure measurement amplifier "MPV04" · · · · · · · · · · · · · · · · · · ·	1
•AC adapter "ES0012001" ·······	1
•Instruction Manual (this manual)······	1
•Warranty and Certificate of Registration·····	1

Handling Precautions

- Turn on the power to the amplifier after connecting between the systems. Be sure to connect the power cable of the amplifier to the AC outlet. Do not turn on/off the power supply by disconnecting and connecting the I/O cable connector. It could damage the amplifier and AC adaptor.
- When the power is once turned off, wait for at least 5 seconds before turning it on again. If the power is turned on within 5 seconds or turned on and off repeatedly, power failure may be caused by rush current generated at power on.
- When turning off the power after setting operation is performed, wait at least 3 seconds. The setting is stored in the non-volatile memory in the amplifier but is not stored correctly if the power is turned off soon after the setting operation.
- Avoid using the system in an environment subject to remarkably high or low temperature. The allowable range of operating temperature is 0 to 50°C. If it is unavoidable to use the system at a place subject to direct sunlight or in a cold area, protect it from sunlight or keep it warm.
- Use the system in the relative humidity range from 35 to 85%. Using it out of the humidity range or in an environment subject to water splashes could result in performance deterioration or failure.
- Do not use the system in a dusty place. Performance degrades if the dust gets inside. Prevent dust from getting inside not only during operation but also during storage. Use the system in an environment in which personal computers can be used.
- If the environment changes drastically, do not operate the system soon. Leave the system in the new operating environment to adapt it to the environment and then use it. If the ambient temperature or humidity is changed drastically due to movement, condensation may cause performance degradation and failure.
- Do not use the system in an environment subject to vibration or impact. Continuous vibration or large impact could cause performance degradation or failure.
- Do not use the system in strong electromagnetic fields. Use it in an environment in which personal computers can be used. Using it in the vicinity of a radio, microwave oven, or electric furnace that generates a strong electromagnetic field could cause performance degradation, malfunction, or failure.
- Do not use the system in locations with poor power supply conditions. Use it with a power supply at 100 to 240 VAC, 50/60 Hz, free from momentary power failure and noise.
- Do not pull connection cables. Connect each connection cable with a margin so that excessive force is not applied to the connection. Pulling the cable or applying excessive force to it could cause failure, measurement interruption, or abnormal measurements.

System Configuration


The following figure shows a system configuration that measures pressure inside the mold using Mold Marshalling system "MPV04 series".

The MPV04 can connect four sensors and measure all the sensors simultaneously. The values measured at 1 ms sampling period are continuously output as voltage (0-10V, 20MPa/V). Capturing this voltage into commercially available measuring equipment such as a data logger, etc. allows you to observe pressure waveforms, set molding conditions and keep track of molding status.

1. Names and Major Functions of Components

1-1 Front

	Name		Function		
1	Display panel		Displays the status and settings of the MPV04.		
2	Control key	"→" key	Changes the display content, moves the cursor.		
		"↑", "↓" key	Changes the setting.		
		"SET" key	Fix the setting changed. Input a trigger signal manually.		
3	Input output terminal	Trigger IN	Trigger signal input terminal + side.		
	block	Trigger GND	Trigger signal input terminal GND side.		
	V-Out CH1		CH1 analog voltage output terminal + side.		
	V-Out CH2		CH2 analog voltage output terminal + side.		
	V-Out CH3		CH3 analog voltage output terminal + side.		
	V-Out CH4		CH4 analog voltage output terminal + side.		
		V-Out GND	Analog voltage output terminal GND side (common		
		V-Out GND	for all the V-Out channels)		
3	Sensor jack		Pressure sensors can be connected to CH1-CH4 jacks.		
4	Grounding (earth) terminal		Terminal for functional ground		
6	Power jack		Jack for dedicated adapter. Supplies power to MPV04.		
7	Communication port for maintenance		Communication port used for maintenance.		

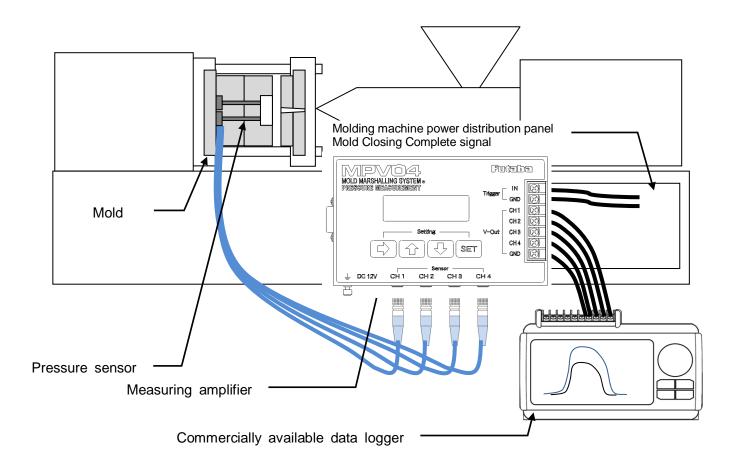
2. Preparation

This section explains the preparation required before turning on the power.

2-1 Installing the System

2-1-1 Installing the pressure sensor

Install the pressure sensor (SSE series or SSB series of Futaba Corporation) on the mold. For the procedure for installing the sensor on the mold, refer to the catalog or "Pressure sensor installation reference diagram" attached to the purchased sensor.

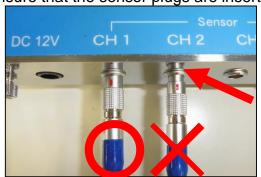

2-1-2 Installing the amplifier

Place the amplifier on the level surface. <u>Note that the operating temperature ranges from 0 to 50°C</u>. Install it at the appropriate place while taking into count the molding behaviors such as opening and closing movements of the mold and ejector protrusion, etc.

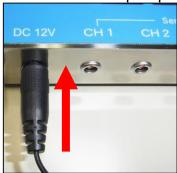
Wire the cable while ensuring there is no crush, torsion or tension in the cable.

Also, take care not to wet the cable.

* If the routing of wiring is inappropriate, the cable may get pulled, not only preventing normal measurement but also causing equipment breakdown.



2-2 Connections in System


- Connect the components in order of the number shown below.
 Operate the amplifier after completing the connections ① to ⑥.
- ① Connect the sensors to MPV04.

 While aligning the red marks on each of the MPV04 jack and sensor plug, insert the plug.

 Ensure that the sensor plugs are inserted to the bottom.

② Connect the AC adapter power jack to the MPV04.

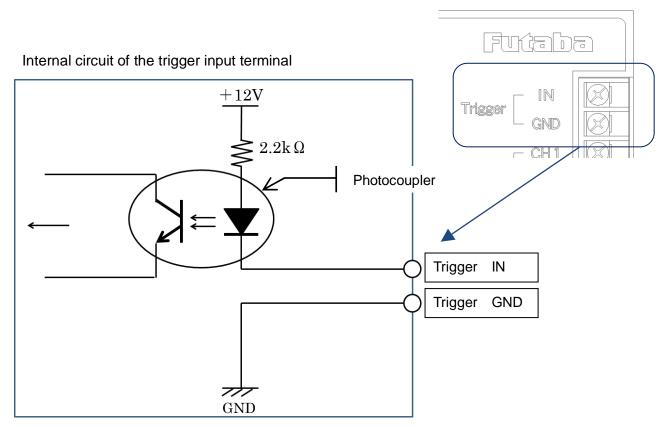
- ③ Connect the trigger signal (→Page 7 to 8) Input Mold Closing Complete signal (contact signal). Connect the signal to the Trigger IN and GND on the terminal block. By shorting the two terminals, a zero reset is performed. Wire the cable so that the length of the cable becomes 3 m or less.
- ④ Connect output signal (voltage output) to external measuring equipment (→Page 9) The output impedance of the MPV04 is 100Ω. Use the measuring equipment, including an oscilloscope and data logger, that has a high impedance (1 MΩ or higher as a guide). Wire the cable so that the length of the cable becomes 3 m or less.
- ⑤ Connect the power supplyPlug the supplied AC adapter for supplying power into the 100-240 VAC outlet.
- (6)Connect the grounding terminal)

The grounding terminal is designed for the grounding called "functional ground" that is meant to ensure stable operation. When measurement conditions are unstable or there are many noises, use this terminal by connecting it to appropriate place.

2-3 Connecting the I/O Signal

The size of the connection screws for wiring the terminal block is M3.

Select the solderless terminal appropriate to the size of the cable used.

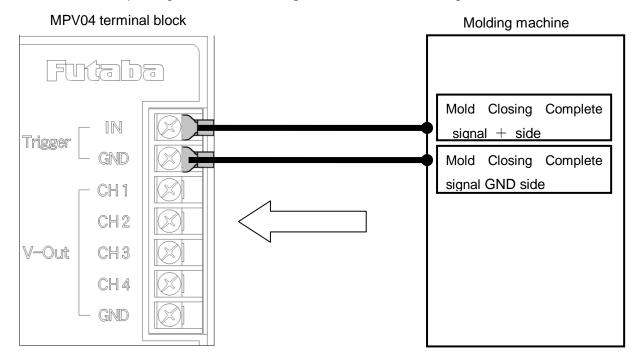

Wire the cable so that the interconnection length from the amplifier becomes 3 m or less.

2-3-1. Notes on trigger signal

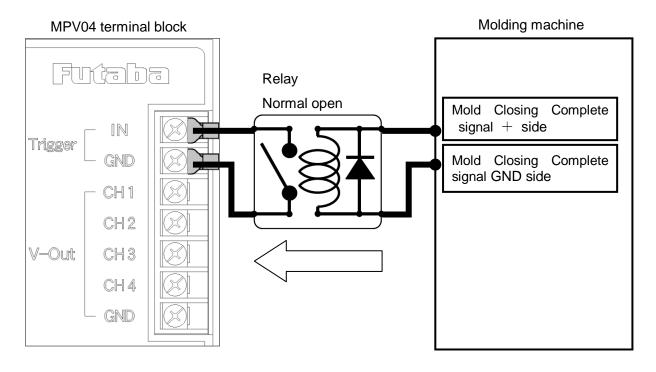
- ➤ Under normal conditions, connect the "Mold Closing Complete" signal as a trigger.
- ➤ In conjunction with the trigger signal, the MPV04 performs a "zero reset". It also cancel a zero-point drift caused by temperature changes at the same time. Therefore, be sure to input the trigger signal for use.
- ➤ Upon input of the trigger, a zero reset is performed. Therefore, be sure to input the trigger signals under the conditions with no pressure loaded to the sensor.
- > Even when you cannot connect a trigger signal, you can perform a zero reset by pressing the "SET" button.
- ➤ It takes about 1 second to perform a zero reset by pressing the SET button whereas a zero reset performed by inputting a trigger signal from the terminal block takes about 0.03 seconds.
- ➤ As the value of the zero reset performed by inputting a trigger signal from the terminal block is stored in the volatile memory, the zero-point value is cleared when this equipment is restarted.
- In the case of the zero reset performed by pressing the "SET" button on the unit, the value is stored in the internal non-volatile memory. Therefore, the zero-point value is retained even after the MPV04 is restarted.
- As signals are detected through the contact input, do not input a voltage.

<Internal circuit>

The following figure shows the internal circuit of the trigger input terminal. The terminal uses a photocoupler to transfer (input) a signal when two terminals are shorted.

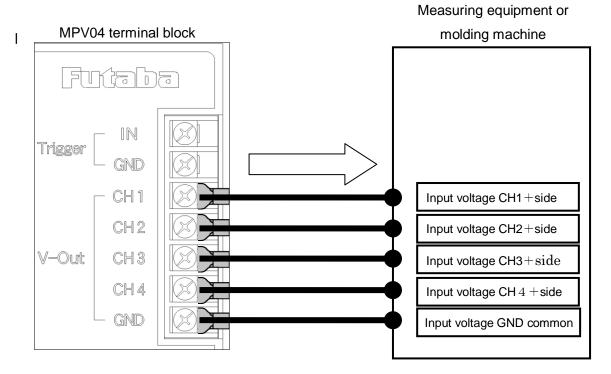


2-3-2. Connect the trigger signal



Input the trigger signal via the electromechanical (contact) relay. Do not apply voltage.

- Wire the cable by referring the following.
 - •When the output signal of the molding machine is contact signal


●When the output signal of the molding machine is voltage signal When the output of the molding machine is voltage output, connect the signal after converting the voltage signal to the contact signal by using a relay. Use a relay equipped with the coil surge absorption circuit.

2-3-3. Connect the output signal (voltage output)

The values measured by the MPV04 and pressure sensors are output as voltage signals.

The values measured with a 1ms sampling period and calculated as pressure values are converted to voltage output at the ratio of 10V per 200 MPa (10V/200MPa). Capturing this voltage into oscilloscope, data logger and molding machine allows you to observe and make use of the in-mold pressure waveforms.

2-4 Connecting the Power Supply

- Supply power to this equipment through the AC adapter that comes with this equipment.
 - *The amplifier does not have a power switch. Never turn power on or off by connecting or disconnecting the I/O cable. It could damage not only the amplifier and AC adapter but also other devices connected.
 - Check the supply voltage before connecting the AC adapter to the AC power source. The operating voltage of the AC adapter is 100 to 240VAC, 50/60Hz.
 - * If the supply voltage is out of the above voltage range or each terminal voltage of the power supply has higher potential than the supply voltage against the ground, never connect it to this equipment. It could cause failure or accident.

3. Basic Operation of Amplifier

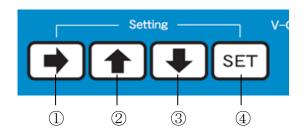
This section describes the basic operation of amplifier "MPV04".

3-1 Turning Power ON/OFF

■Turning power ON

Turn on the power to the amplifier by referring to Section 2-4 "Connecting the Power Supply" (→ Page 9)

■Turning power OFF


Disconnect the AC plug of the AC adapter from the AC outlet.

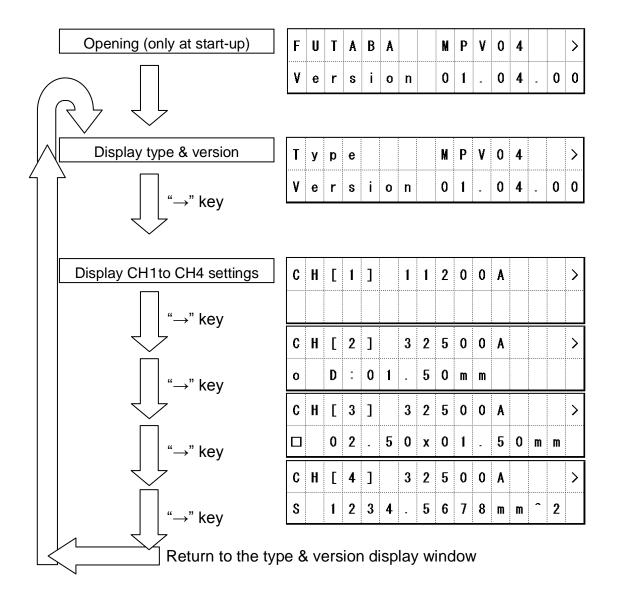
* The amplifier does not have a power switch. Never turn on or off by connecting or disconnecting the I/O cable. It could damage not only the amplifier and AC adapter but also other devices connected.

3-2 Operating the Amplifier

3-2-1 Operating the key switches

- Operate the keys on the amplifier as needed in the following cases.
 - •When checking or changing each sensor CH settings or version information, etc., which are set in the amplifier
 - When performing a zero reset manually

(1)	"→" key	Feeds the display screen or
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	moves the cursor position
2	"↑" key	Moves to the display window for
3	"↓" key	changing the sensitivity class. Used to change the setting.
4	"SET" key	Fixes the change made. At the same time, the change is stored in the memory and a zero set is performed.

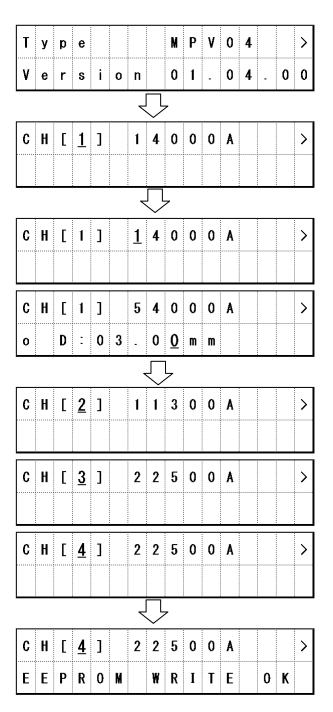

3-2-2 Checking the display window

When the power is turned on, the display panel window on this equipment shifts as follows.

■ Shifting of the display window

The windows shifts in the following order.

After the opening is finished, switch the display contents by using "→" key.


*The version of the MPV04 is current as of October 2014. It is subject to change without prior notice.

4. Basic Operation

4-1 Setting the Sensor Sensitivity Class

The MPV04 allows you to make measurements by connecting pressure sensors. To adjust any variance of sensors, a series of values called a sensitivity class should be entered on the MPV04 as shown below before use. The sensitivity class is indicated on the label attached to

the sensor connector (see right figure).

PV

0 1

0

0

4

0 0

T

У

рe

r

i o n

Press "↑" and "↓" keys to select the channel to be set.

Press "→" key to move the cursor to the position to enter the sensitivity class and change the value by using "↑" and "↓" keys. The digit to be set is underlined. For a button type pressure sensor, an "area of load" input item is displayed in the lower row.

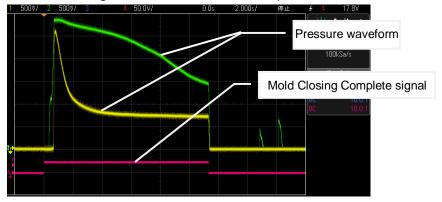
Press " \rightarrow " key to return the cursor to the channel selection window. Use " \uparrow " and " \downarrow " keys to switch the channel to continue to enter the sensitivity class for all the sensors.

After the settings of all the channels are completed, press "SET" key to fix and reflect the changes.

A message "EEPROM WRITE OK" is displayed in the lower row, and then the window shifts to the version display screen.

5. Using the System

The previous operations have finished the necessary preparation. Now, the user can run the system and observe pressure waveform.


5-1 Starting Measurement

Now, the system is completely ready to observe waveforms.

- Measurement of pressure waveforms begins when a trigger signal (measurement start signal) is input from the molding machine.
 - * A trigger signal can also be input manually by pressing the SET key of the amplifier. However, it is hard to press the SET key every time according to the operation of the molding machine. Consider this manual operation as an emergency response.

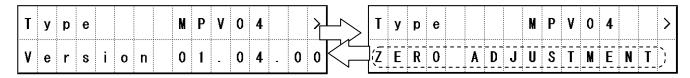
5-2 Observing Pressure Waveforms

Capturing the output voltage into an external equipment allows you to observe the pressure waveforms. The figure below shows an example of a measurement made with an oscilloscope.

* If waveforms are not displayed, check the following.

- ① Has resin reached the sensor?
 - → Check the molded parts and the sensor mounting position.
- ② Is the system connected correctly? (sensors, power supply, trigger signal, cables for output voltage)
 - → Check the connections by referring to Section 2-2 "Connections in System" (→ Page 6)
- ③ Has a trigger signal been input properly?
 - → Has a trigger signal been input properly and is the "ZERO ADJUSTMENT" message displayed in the lower row on the display panel window?
 - → Is the timing of the trigger input correct?
 - → Has a contact signal been input?
 - → Has a trigger signal been input with no load applied to the pressure sensor?
- ④ Isn't the sensor damaged?
 - → Open- or short-circuit of the cable can be checked easily using a multimeter connection cable (sold separately).
 - → Is there any open-circuit or connector damage, etc.?

6. Checking the Operation


This section explains how to check whether the system runs normally.

6-1 Checking a Trigger Input Signal

Check whether the connected input signal works normally.

■ Checking the operation of input signals

Input a trigger signal. If it is input normally, the message in the lower row on the display panel of the main unit changes as shown below, and then returns to the original display.

6-2 Checking the Output Signal

■ Checking the operation of output signal

If "waveforms are not displayed" or "the pressure value is too low (or too high)" and you think that a pressure sensor is faulty, it is recommended to calibrate the sensor. Sensor calibration is available for a fee. Please contact the nearest Futaba Sales office (written on back cover).

6-2-1 Quick sensor checking

Follow the procedure below to check the operation of a sensor with it installed in the mold.

- ① Simply check whether a pressure sensor is operating normally.
 - → With the mold opened, protrude an ejector pin, and perform a zero reset manually. Then, push the tip of an ejector pin that has a pressure sensor connected to it by hand or with some tool to check whether the waveform fluctuates up and down, reacting to the pushing force.
- ② Check the accuracy of a pressure sensor
 - → Prepare a load measuring device called push-pull gauge. With the mold opened, perform a zero reset of both the MPV04 and push-pull gauge. Then, push the tip of an ejector pin that has a sensor connected to it with the push-pull gauge to measure the load. Calculate the pressure value that should be detected when the load is applied, compare it with the measured value and check whether the difference is within the accuracy specification range.

The following table shows the load that corresponds to a pressure of 100 MPa for each pin diameter case. If you apply one tenth of the indicated load, 100MPax (1/10)=10MPa (=0.5V) will be output.

Area of load pin diameter [mm]	φ0.8	φ1.0	φ1.2	φ1.5	φ2.0	φ2.5	φ3.0
Load at 100MPa [kfg]	5.13	8.01	11.53	18.02	32.04	50.06	72.08
Load at 100MPa [N]	50.27	78.54	113.10	176.71	314.16	490.87	706.86

7. Measuring with an External Measuring Device

The pressure measuring amplifier MPV04 can output voltage according to the pressure value. This section explains how to connect the system to an external measuring device and view pressure waveforms.

7-1 Connecting an External Measuring Device

■ Connect the input port of an external measuring device to the MPV04 output voltage (terminal board).

The size of the connection screws for wiring the terminal block is M3.

7-2 Setting the External Measuring Device

Set the voltage collection conditions of the external measuring device by referring to the following.

The MPV04's sampling and data updating interval is 1 ms. Set the sampling speed commensurate with the waveforms on the external measuring device to obtain data.

- < Ratio of measured pressure value to output voltage >
- A measured value of 1 MPa is output as 50 mV voltage (Voltage output range: 0 to 10 V)

Measured pressur	Output voltage	
200 MPa	\rightarrow	10 V
100 MPa	\rightarrow	5 V
50 MPa	\rightarrow	2.5 V
20 MPa	\rightarrow	1 V

7-3 Observing Pressure Waveforms

Observe and log pressure waveforms with a data logger, etc.

Observing in-mold resin pressure allows you to keep track of the molding status or analyze the resin behavior when a defective molded product is produced.

The use of an alarm function of a data logger also help you to determine whether the molded product is good or bad. As the performance of the alarm function depends on the specifications of the data logger, refer to the instruction manual of your data logger.

8. Reference

8-1 Sensitivity Class Conversion Table for Older Pressure Sensor (EPS Series)

■ Here is a sensitivity class conversion table for using older pressure sensors (EPS series) and a conversion adapter (ACAE01).

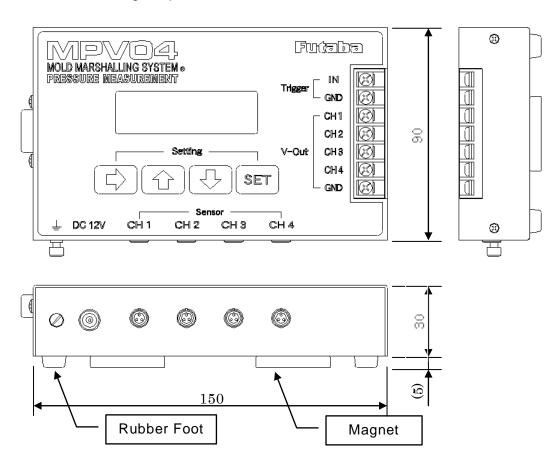
EPS	Sensitivity	EPS	Sensitivity	т 1	EPS	Sensitivity	EPS	Sensitivity
sensitivity	class input	sensitivity	class input	ш	sensitivity	class input	sensitivity	class input
class	value	class	value		class	value	class	value
BA	12000A	DA	14000A	↓ ↓	JA	22000A	LA	24000A
BB	12040A	D B	14040A	↓ ↓	J B	22040A	L B	24040A
BC	12080A	DC	14080A	↓ ↓	JC	22080A	LC	24080A
B D	12120A	D D	14120A	↓ ↓	J D	22120A	L D	24120A
BE	12160A	DE	14160A	↓ ↓	JE	22160A	LE	24160A
BF	12200A	DF	14200A	↓ ↓	J F	22200A	LF	24200A
BG	12240A	DG	14240A	∤ ∤	J G	22240A	L G	24240A
ВН	12280A	DH	14280A		JH	22280A	LH	24280A
BI	12320A	DI	14320A	∤ ∤	JI	22320A	LI	24320A
BJ	12360A	DJ	14360A	∤ ∤	JJ	22360A	LJ	24360A
BK	12400A	DK	14400A	∤ ∤	J K	22400A	LK	24400A
BL	12440A	DL	14440A	∤ ∤	JL	22440A	LL	24440A
BM	12480A	D M	14480A	┨	J M	22480A	L M	24480A
BN	12520A	D N	14520A	∤ ∤	JN	22520A	LN	24520A
BP	12560A 12600A	D P D Q	14560A 14600A	┧	J P J Q	22560A 22600A	L P L Q	24560A 24600A
B Q B R	12640A	DR		┨	J R		LR	
BS	12640A 12680A	DS	14640A	∤ ∤	JS	22640A 22680A	LS	24640A
BT	12720A	DT	14680A 14720A	∤ ∤	JT	22720A	LT	24680A 24720A
BU	12720A 12760A	DU	14760A	∤ ∤	JU	22720A 22760A	LU	24720A 24760A
BV	12800A	DV	14800A	∤ ∤	JV	22800A	LV	24760A 24800A
BW	12840A	D W	14840A	┧	JW	22840A	LW	24840A
BX	12880A	DX	14880A	┨	JX	22880A	LX	24880A
BY	12920A	DY	14920A	┧	JY	22920A	LY	24920A
BZ	12960A	DZ	14960A	1 1	JZ	22960A	LZ	24960A
CA	13000A	EA	15000A	1 1	KA	23000A	M A	25000A
CB	13040A	EB	15040A	┧	KB	23040A	M B	25040A
CC	13080A	EC	15080A	1 1	KC	23080A	M C	25080A
CD	13120A	E D	15120A	† †	K D	23120A	M D	25120A
CE	13160A	EE	15160A	t t	KE	23160A	ME	25160A
CF	13200A	EF	15200A	t t	KF	23200A	MF	25200A
CG	13240A	EG	15240A	† †	KG	23240A	M G	25240A
СН	13280A	EH	15280A	† †	KH	23280A	MH	25280A
CI	13320A	EI	15320A	† †	ΚI	23320A	M I	25320A
C J	13360A	EJ	15360A	† †	KJ	23360A	MJ	25360A
CK	13400A	EK	15400A	† †	KK	23400A	M K	25400A
CL	13440A	EL	15440A	† †	KL	23440A	ML	25440A
СМ	13480A	EM	15480A	1 1	KM	23480A	M M	25480A
CN	13520A	EN	15520A	1 1	KN	23520A	MN	25520A
CP	13560A	EP	15560A	1	KP	23560A	MP	25560A
CQ	13600A	E Q	15600A	1 1	K Q	23600A	M Q	25600A
CR	13640A	ER	15640A	Ī	KR	23640A	MR	25640A
C S	13680A	ES	15680A]	KS	23680A	MS	25680A
CT	13720A	ET	15720A	ΙΙ	ΚT	23720A	M T	25720A
CU	13760A	EU	15760A		ΚU	23760A	MU	25760A
CV	13800A	ΕV	15800A	ΙÌ	ΚV	23800A	MV	25800A
C W	13840A	E W	15840A	ΙΙ	K W	23840A	M W	25840A
CX	13880A	EX	15880A] [ΚX	23880A	M X	25880A
CY	13920A	EY	15920A] [ΚY	23920A	MY	25920A
CZ	13960A	ΕZ	15960A	↓ [ΚZ	23960A	ΜZ	25960A

9. Specifications

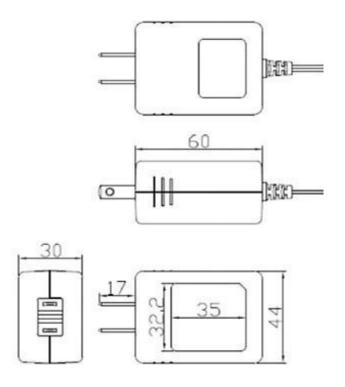
■ List of specifications

<Pre><Pre>ressure measuring amplifier MPV04>

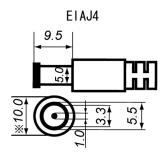
Number of measurement points	4
Measurement range	0 to 200 MPa ※1
Accuracy	±2% F.S.
Sampling period	1 ms ※2
Control input	Non-voltage contact input
Analog output	0 to 10 V (corresponding to pressure 0 to 200 MPa) 3
Analog output	Output impedance: about 100 Ω
	SSE series, SSB series of Futaba Corporation
Sensors to be connected	(For EPS series, separately sold conversion adapter ACAE01 is required for
	each measurement CH)
Case material	SUS430
Operating temperature range	0 to +50°C
Operating ambient humidity	35 to 85%RH (no condensation)
Vibration registers	10 to 55Hz, double amplitude 1.5 mm, 2 hours in each direction of X, Y, and
Vibration resistance	Z
Warm-up time	About 30 minutes (recommended)
Dower on orifications	Dedicated AC adapter ES0012001 should be used.
Power specifications	Input: 100 to 240 VAC (50/60 Hz), 0.3 A
Conformity standard	CE Compliant (applicable standard: EN61326-1)
Weight	About 510g


- *1 The upper limit of the amplifier's measurement range changes depending on the pressure sensor's measurement range.
- *2 This is a cycle at which data is sampled. 1 millisecond (ms) is 1/1000 of a second, 1000 samples of data is taken per second.
- *3 The output voltage of 5 V corresponds to the in-mold resin pressure of 100 MPa.

<AC adapter ES0012001>


Total length	About 1,900 mm (DC cable length: about 1,800 mm)
D 77 17	Input: 100 to 240 V AC (50/60 Hz), 0.3 A
Power specifications	Output: 12 VDC, 1.0 A
External dimension (main unit)	60×44×30 mm
Operating temperature range	0 to +40 °C
Operating ambient humidity	10 to 90 % RH (no condensation)
	DC plug EIAJ-4 (φ5.5×φ3.3×φ1.0 mm)
Output plug	Polarity: center plus
	Shape: straight
Weight	About 130 g

Outline drawing [Unit: mm]


<Pre><Pressure measuring amplifier MPV04>

<AC adaptor ES0012001>

<DC plug of AC adaptor>

FUTABA Corporation of America —

Chicago Office	711 E. State Parkway Schaumburg, Illinois 60173,U.S.A.	TEL:1-847-884-1444	FAX:1-847-884-1635
Detroit Office	14492 Sheldon Road, Suite #370,Plymouth,Michigan 48170,U.S.A.	TEL:1-734-459-1177	FAX:1-734-459-1268
Huntsville Office	101 Electronics Boulevard, Huntsville, Alabama 35824,U.S.A.	TEL:1-256-461-9399	FAX:1-256-461-1059
El Paso(Distribution	on Center) 24 Spur Dr, El Paso, TX, United States	TEL:1-915-771-7858	

URL http://www.futaba.co.jp

The specifications may be changed for improvement without prior notice.