

Pressure Measuring Unit

RS485 Communication Specifications

1. Specifications

Item No.	Item	Specificati
1	Interface	EIA standard RS485 compliant
2	Transmission line	2-wire, multi-drop
3	Transmission distance	Up to 500 m
4	Transmission speed (bps)	19200
5	Communication method	Half-duplex
6	Synchronous method	Start-stop synchronization
7	Data format	Start bits: 1
		Data bits: 8
		Parity bits: none
		Stop bits: 1
8	Max connectivity	32 devices including master (due to the restriction at the
		physical layer)
9	Signal logic	V (A) > V (B) 0 (SPACE)
		V (A) $<$ V (B) 1 (MARK)
10	Protocol	ModBus
11	Transmission mode	Remote Terminal Unit (RTU) mode
12	Function code	0 3 H (Read Holding Registers)
		0 8 H (Loopback Diagnostic Test)
13	Error control	Parity check, CRC-16
14	Exception code	0 1 H (Illegal function)
		0 2 H (Illegal data address)
		0 3 H (Illegal data value)
		0 4 H (Slave device failure)

2. Signal name

Signal name	Description
SG	Signal Ground
T / R(A)	Transmitted/Received Data
T / R(B)	Transmitted/Received Data

3. Communication parameter

Abbreviation	Name	Setting range	Description	Factory
				default
Adr	Slave address	1 to 247	Address to identify each controller	1
bPS	Transmission speed	19200	Transmission speed setting value	19200
bit	Data format	8n1	8 bits, no parity, 1 stop bit	8n1
int	Interval time [ms]	10 to 1000	Communication interval time setting	10
			value	

Note 1) When any communication parameter is changed, it is necessary to power the system off and on again. Otherwise, the new value will not be used for communication.

Note 2) It is necessary to set the unit to have the same transmission speed as the master.

Note 3) It is necessary to set the unit to have the same data format as the master.

4. Message configuration

In ModBus protocol, the master (host computer) always starts a communication, and the slave (this measuring unit) responds to the master. One master and one or more slave devices (up to 247 devices) are connected to the network.

A communication is always initiated by the master. The slave devices will never transmit data without receiving a command (request) message from the master.

The salve devices will never communicate with each other.

The master issues only one command at once, and cannot transmit multiple commands at the same time.

- The master sends a command (request) message to a slave device.
- The slave device checks whether the address in the received message matches its own address.
- If matched, the slave executes the command and sends back the response message.
- If mismatched, the slave leaves the command message and wait for the next command message.

Message frame (1+1+(maximum address+1)×2+1+2 bytes at maximum)

Slave address	Function code	Data	Error detectin	ng code (CRC)
1 byte	1 byte	0~	2 b	ytes
		(maximum address +1)	CRCLow	CRCHi
		×2+1 byte		

1) Slave address

This is a number necessary to identify the slave and addressed from 1 to 247. The master transmits a signal to only one slave. Handling of address 0

Address 0 is used as broadcast message from the master.

When receiving this message, the slave executes the command, but sends back no response message.

2) Function code

This is a code used to specify the action to perform. A function code is followed by data associated with this command and the response to it. For details, refer to "5. Function code".

3) Error detecting code

This is a code used to detect errors in messages. CRC-16 is used. For details, refer to "CRC-16 calculation".

5. Function code

 $\langle \text{Function} \rangle$

Code	Name	Function
03H	Read Holding Registers	Read the contents of a continuous block of holding register
08H	Diagnostic	Communication diagnostic

(Message length)

Code	Command message (byte) Response r		essage (byte)	
	Minimum	Maximum	Minimum	Maximum
03H	8	8	7	1+1+(maximum address×2+1)+2
06H	8	8	8	8
08H	8	8	8	8

5-1. 03H Read Holding Registers (Read registers)

This function code is used to read the contents of the holding registers with the continuous numbers (address) for the specified quantity starting at the specified number (address). The content of the holding register is divided into high order 8 bits and low order 8 bits, and packed in the response data in numerical order.

$\langle \text{Command message} \rangle$

Slave address	Function code	Starting address	Quantity of registers	Error detecting code
01н∼Г7н	03н	0000H~	0001н~	
		Maximum address _H	Maximum address+1 _H	
1 byte	1 byte	2 byte	2 byte	2 byte

Slave address	Function code	Number of bytes	Data	Error detecting code
Same as command	Same as command	$0.2 \sim$		
message	message	(Maximum address+1)×2 _H		
1 byte	1 byte	1 byte	n byte	2 byte

 $\langle \text{Exception response} \rangle$

- If the slave receives a command message, but detects an error (other than communication error) with the content, the slave does not execute the command and returns an exception response message.
- Whenever the slave determines any of the content of a message as an error by means of its self-diagnostic function, the slave returns to an exception response message to the command message.

Slave address	Function code	Exception code	Error detecting code
Same as command message	83H	$0 1_{\mathrm{H}} \sim 0 4_{\mathrm{H}}$	2 huto
1 byte	1 byte	1 byte	2 byte

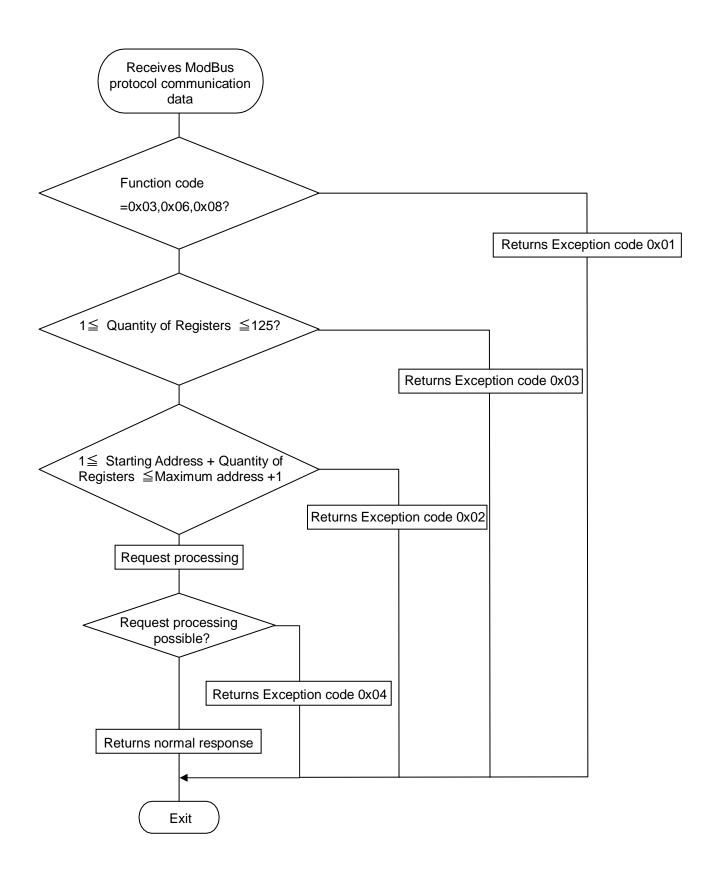


Figure 1 Register readout flowchart

Example 1) When reading out data of three registers starting from a holding register " 0 0 0 0 H" with a slave address "2"

Command message

Slave address	02н		
Function code	Function code		
Start number	High order	00 _H	
	Low order	00н	
Quantity of registers	High order	00н	
	Low order	03н	
CRC-16	High order	05н	
	Low order	F8μ	

Response message (normal)

Slave address	02н	
Function code		03н
Number of data (*1)		06н
Contents of the first	High order	00 _H
holding register	Low order	00н
Contents of the next	High order	0 Он
holding register	Low order	03н
Contents of the next	High order	0 Он
holding register	Low order	63н
CRC-16	High order	85н
	Low order	АСн

Response message (exception)

Slave address	02н	
Function code + 8	83 _H	
Exception code	03н	
CRC-16	High order	$F 1_H$
	Low order	$3\ 1_{\mathrm{H}}$

(*1) Number of holding registers x2

5-2. 08H Diagnostic (Loopback diagnostic test)

The loopback test returns the command messages directly as response messages without changing the content. This function is used to check communication between the master and slave.

 $\langle \text{Command message} \rangle$

Slave address	Function code	Sub-function code	Data	Error detection code
0 1 _H ~F 7 _H	08 _H	$0\ 0\ 0\ 0\ _{H}$ (Fix)	0000 _H ~FFF	
			FΗ	
1 byte	1 byte	2 byte	2 byte	2 byte

 $\langle Normal response \rangle$

Slave address	Function code	Sub-function code	Data	Error detection code
Same as command	Same as command	Same as command	Same as command	
message	message	message	message	
1 byte	1 byte	2 byte	2 byte	2 byte

 $\langle \text{Exception responses} \rangle$

- If the slave receives a command message, but detects an error (other than communication error) with the content, the slave does not execute the command and returns an exception response message.
- Whenever the slave determines any of the content of a message as an error by means of its self-diagnostic function, the slave returns to an exception response message to the command message.

Slave address	Function code	Exception code	Error detection code
Same as command message	88 H		
1 byte	1 byte	1 byte	2 byte

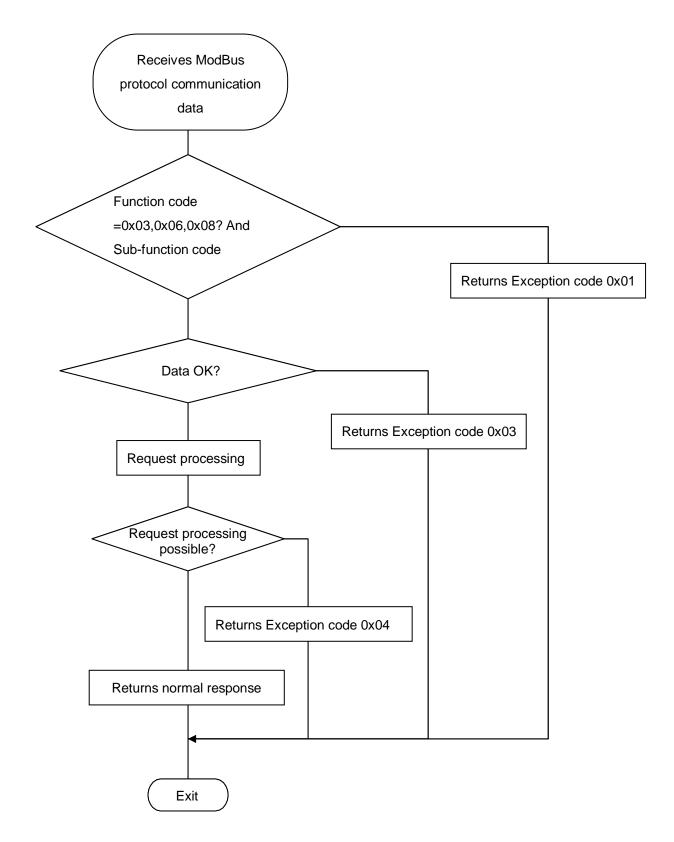


Figure 2 Loopback diagnostic test flowchart

Slave address	01н	
Function code	08н	
Sub-function code	Sub-function code High order	
(*1)	Low order	0 Он
Data	High order	1 Fн
	Low order	$3 4_{H}$
CRC-16	High order	Е9н
	Low order	ЕСн

Command message

(*1): Sub-function code is fixed to " $0 \ 0 \ 0 \ H$ ".

Response message (normal)

: Same content as the command message

Slave address	01н	
Function Code	08н	
Sub-function code	00н	
	0 Он	
Data	High order	1 Fн
	Low order	34н
CRC-16	High order	Е9н
	Low order	ЕСн

Response message (Exception)

Slave address	01 _н	
Function code+80H	88 _H	
Exception code	03н	
CRC-16	High order	06н
	Low order	01 _н

Exception code table

Exception code	Content		
1	Illegal Function (Unsupported function code is specified)		
2	Invalid data address is specified.		
	Write request is issued to a read-only address		
	Starting address or quantity of registers that extends beyond the highest		
	configured data address.		
	For communication diagnostic (0.8 H), a sub-function code other than		
	" $0 \ 0 \ 0 \ H$ " is specified.		
3	Data value that falls outside the setting range is specified as write data		
4	Self-diagnostic error		
	An unrecoverable error irreparable error occurred while executing the request.		
	The parameter is being changed through the panel operation at that time.		

$\langle No \ response \rangle$

The slave address specified in the command message does not match its own address.

The CRC in the command message does not equal the CRC recalculated by the slave.

A transmission error (overrun, framing error or parity error) is detected.

The Interval of the data making up a message is longer than 30 ms.

6. CRC-16 calculation

The CRC is an error check code of two bytes (16 bits). After configuring a message, the master calculates the CRC value and appends the calculation result to the end of the message.

The slave recalculate a CRC based on the message it received and compares the calculated value to the actual CRC code in the CRC field of the message. If the two values are not equal, the slave returns no response. The CRC is calculated by using only the data that does not include start, stop or parity bit.

 $\langle \text{CRC} \text{ code generation procedure} \rangle$

- 1) Load a 16-bit register with FFFFH.
- 2) Exclusive OR the first one byte (8 bits) of the message with the low order byte of the CRC register, with the result put into the CRC register.
- 3) Shift the CRC register one bit to the right.
- 4) If the carry flag is 1:

Exclusive OR the CRC register with the A001H, with the result put into the CRC register.

If the carry flag is 0: Repeat the Step 3.

- 5) Repeat Steps 3) and 4) until 8 shifts have been performed.
- 6) Exclusive OR the next one byte (8 bits) of the message with the CRC register.
- 7) Repeat Steps 3) through 6) for all (one byte) messages (excluding the CRC).
- 8) The calculated CRC is appended to the message as a two-byte error check code with the low order byte appended first.

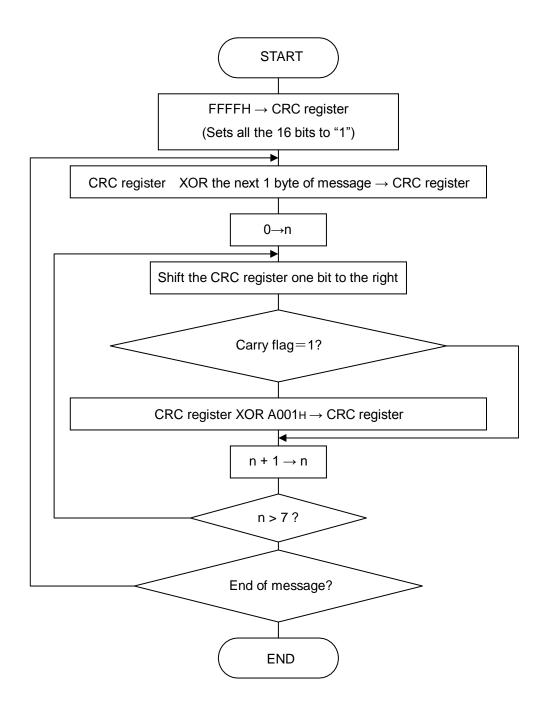


Figure 4 CRC calculation flowchart

7. Data range

The numeric range of data used in this communication is " $0 \ 0 \ 0 \ H$ to FFFH". "FFFH" represents "-1".

The data with decimal points are treated as the data without decimal points during communication. Handling of negative data

Example) $-1 \ 0. \ 0^{\circ}$ C $-1 \ 0. \ 0 \rightarrow -1 \ 0 \ 0 = 0 \ 0 \ 0 \ 0 \ H = F F 9 \ CH$

8. Communication data list

Attribute

RO: Read only

· Read-only register list

Address	Name	Data	Attribute
0000H	Reserved		RO
0001H	Software version	0 to 9999(V 0 . 00to V 99. 99)	RO
0002H	Software checksum	0 x 0000~ 0 x FFFF	RO
0003H	Communication format version	0 to 9999(V 0 . 00bV 99. 99)	RO
0004H	Status flag	1 / 0	RO
		(1: Shot status 0: Stopped)	
0005H	Current pressure value	0 to 9999	RO
		(0 to 999.9 MPa)	
0006H	Spare	Unused	RO
~			
000FH			
		Continued to the next page	

Address	Name	Data	Attribut
0010H	Shot count (first 4 digits)	0 to 9 9 9 9	RO
		(First 4 digits of the shot count)	
0011H	Shot count (last 4 digits)		RO
		(Last 4 digits of the shot count)	
0012H	Peak pressure value	0 to 9 9 9 9	RO
		(0 to 9 9 9 . 9 MPa)	
0013H	Time to peak	0 to 6 0 0 0 0	RO
		($0 \sim 600$. 00 sec)	
0014H	Peak pressure detection	1 / 0	RO
		(1: OK 0: NG)	
0015H	Point pressure value (pressure at t-second point)	0 to 9 9 9 9	RO
		(0 to 9 9 9 . 9 MPa)	
0016H	T-second point in monitoring (preset time)	0 to 6 0 0 0 0	RO
		(0 to 6 0 0 . 0 0 sec)	
0017H	Point pressure detection	1 / 0	RO
		(1 : OK 0 : NG)	
0018H	Eject pressure value	0 to 9 9 9 9	RO
		$(0 \sim 999. 9MPa)$	
0019H	Eject time	0 ~ 60000	RO
		(0~600. 00秒)	
001AH	Eject pressure detection	1 / 0	RO
		(1 : OK 0 : NG)	
001BH	Spare	Unused	RO
~			
001FH			